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We furnish evidence support ing our conjecture that the growth of structure which 
results at the onset  of  a center manifold in driven systems operating far from 
equilibrium can be described by a power law with a single exponent.  More 
specifically, if the dissipative structure is contained in a center manifold and 
thus its stability is warranted, the linear dimensions  for domains  of  organized 
spatial cells increase a s  t 1/2. 

1. INTRODUCTION 

The emergence of ordered structures in nonequilibrium driven systems 
is a field currently active investigation (Prigogine, 1984; Fernfindez, 1988a). 
A most challenging problem in this realm is to obtain general conditions 
which would warrant the permanence and stability of dissipative organiz- 
ations (Fern~indez, 1988b). It has been established that, in a neighborhood 
of a critical dynamical regime, suitable constraints are furnished by the 
restriction that the dissipative structure must be contained within a locally- 
invariant and locally-attractive portion of phase space known as the center 
manifold (CM) (Fernfindez, 1988a, b). This hypersurface is normally calcu- 
lated making use of what essentially is a mean field approach, with a free 
energy functional including third-order terms and terms representing the 
coupling between order parameters and fast-relaxing degrees of freedom 
(Fernfindez, 1988b). The CM coordinates are thus given by the order 
parameters which characterize the regime beyond the critical instability. 

Perhaps the most elusive property of dissipative organizations, beyond 
the purely phenomenological realm, is the cooperativity among spatially- 
coupled cells which is responsible for the characteristic long-range order. 
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Such cells, of  course, are virtual entities (just like a Gibbs ensemble is a 
virtual object in equilibrium regimes), required to understand the onset of 
collective modes. However, models which make use of a cell decomposition, 
based on cooperative or synergistic interactions between subsystems, have 
proved successful in explaining the nature of  intrinsic collective fluctuational 
modes in such different contexts as the onset of convective patterns (Fern~in- 
dez, 1988b) and the emergence of oscillatory and spatial patterns in open 
biochemical reactors (Prigogine, 1984). 

The models for cooperativity have been tested against experimental 
evidence (Fern~indez, 1988b). The observable most widely used because of 
its experimental accessibility is the induction period for decay of metastable 
states (Langer, 1969): A homogeneous steady state is "quenched" within 
the critical regime and the decay of such a state occurs as a consequence 
of  the propagation and amplification of nonequilibrium fluctuations along 
the CM. The terminal state is reached once all subsystems or cells belong 
to the CM and the quenched state is therefore regarded as metastable. The 
reader can easily trace an analogy with spinodal decompositions, familiar 
from condensed matter physics (Binder and Heermann, 1985). The similarity 
becomes all the more apparent once we have noticed that, in the case of 
nonequilibrium organizations, a critical "nucleus" is made up of a single 
cell contained in the CM. 

The aim of this work is to study the growth of ordered domains during 
the amplification of long-wavelength fluctuations which occurs as time 
proceeds after the quench. This growth will be characterized by the time 
dependence of  the linear dimension of ordered domains. Such domains, in 
turn, are comprised of  cells which lie in the CM. At this point, we can 
anticipate the main result of  this work: Computer  simulation experiments 
provide evidence in support of the view that the growth of  ordered domains 
is governed by a simple power law which makes our processes lie in the 
same universality class as previously-studied ordered-disorder phenomena 
(Binder and Heermann, 1985). 

2. THE GROWTH OF ORDERED DOMAINS AT THE ONSET 
OF A CM 

The existence of a CM entails a scaling of the intensity for the intrinsic 
random source and of the kinetic and control parameters of the system 
(Fernfindez, 1988a, b). The small characteristic parameter associated with 
the scaling is w~ v, where v is the thermodynamic volume of the system and 
w is the volume of a virtual spatial cell. Thus, the existence of a CM allows 
for the construction of  a nonequilibrium ensemble of coupled subsystems 
whose dimensions are determined by the scaling. The parameter (y) which 
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we plan to investigate is defined as follows: 

(y) = ((VorJW) 2/3) (1) 

where the angular brackets denote thermal or statistical average over the 
ensemble of  subsystems and Vorg is the volume, measured in w units, of  the 
reunion of  organized subsystems adjacent to a given organized subsystem. 
Thus, if 03 denotes a generic subsystem, we get 

f !  if 03 is not organized 
(Vorg/W)(03) = if 03 is organized, but isolated (2) 

if 03 is surrounded by n - 1  organized cells 

The exponent 2/3 in equation (1) was chosen so that we can establish 
the t ime-dependent behavior of the linear dimensions of ordered domains. 
The choice is justified since we shall furnish evidence in support of  the 
power law 

L( t )  ~ t 1/2 (3) 

where L represents the linear dimension. 
The average indicated in equation (1) is given by 

(y) = ( w / v )  F, [Vorg(03)lw] 2/3 (4) 

In order to establish the t ime-dependent behavior of this function, it 
is essential that we make use of  the model recently implemented (Fern~indez, 
1988a) for the propagation and amplification of fluctuations along the CM. 
For the sake of clarity, we outline here the basic tenets of the model. 

1. Every (virtual) subsystem has volume w and the partition of the 
thermodynamic volume v is made according to the CM decomposition. All 
subsystems are assigned an identical coarse-grained phase space, denoted 
by Y. The coarse graining is determined by the space of realizations of  the 
random source which results after a CM reduction has been performed on 
the original master equation. This starting equation involves all the degrees 
of freedom in the system. By a CM reduction we mean a scaling operation 
which yields, to leading order in w~ v, a "smeared" Fokker-Planck equation 
for the order parameters or CM coordinates. The phase space Z can be 
specified by equivalence relations, where two microstates which are equiva- 
lent are regarded as one and the same. The microstates are equivalent if 
and only if: (a) they have associated the same macrostate (as defined by a 
particular value of  the CM coordinates) and (b) there exists a phase 
trajectory joining them which does not entail any variation in the random 
source term of  the smeared Fokker-Planck equation. 
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2. The time evolution of the system in a metastable state is described 
by a probability distribution p, given by 

p ={p(A)}al, c~A~in'~; p(A) = (x(A)) (5) 

Here A denotes an arbitrary microstate in a cell, c(A) denotes the class 
of  all equivalent microstates, and x(A) is the characteristic function of  
c(A), defined over E. Thus, p(A) gives the probability that a cell is in a 
microstate equivalent to A. 

3. In order to study the growth of ordered domains of cells, we must 
restrict ourselves to a subspace of  Z. This subspace, denoted A, contains 
all classes of  microstates whose macrostates belong to the CM, excluding 
the attractor. This restriction is properly justified in Fernandez (1988a) and 
must be introduced since the lifetime of an organized cell in the attractor 
is infinite, whereas the lifetime of a cell in the CM excluding the attractor 
is finite (this portion is strictly locally attractive). Thus, the evolution of  
organized cells, which behave as information carriers, is given by the 
distribution 

P = {p(B)}aU e(B)i, a (6) 

The time evolution of P depends on the cell correlations 

SA, = ((x(A, a)x(B, fl))c,)~ (7) 

where a and fl label replicas. The evolution of information carriers is 
governed by the system of  equations [there is one equation for each cell 
c(B) in A] 

(Ox( B)/Ot) = [c(A)~in A (OSAB/Ot)(1- x)(x( A)) ] 

- S - ' (  [If II 2) '/2(x(B)) (8) 

where x is the order parameter that gives the probability that a subsystem 
lies in the CM, excluding the attractor: 

x= • p(B) (9) 
c(B) in A 

Thus, 1 - x gives the probability that a particular subsystem is disorgan- 
ized or lies in the attractor. This implies that a term proportional to 1 - x  
which depends on A and B gives the probability per unit time that a 
subsystem in cell c(A) induces a subsystem whose microstate is outside A 
to become organized by evolving to c(B) (which, obviously, must belong 
to A). The remaining term in the rhs of equation (8) reflects the fact that 
the CM acts as a transient source of  free energy, since each information 
carrier has a finite lifetime given by the reciprocal of  the effective diffusion 
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coefficient. This coefficient is specified by the strength o f  the r andom source 
f = f ( t )  in the smeared Fokke r -P lanck  equat ion  and by the d imension  N 
o f  the CM. 

At this point  we are in a posi t ion to investigate the time behavior  o f  
ordered  domains .  For  the purpose  o f  adequate  verification o f  equat ion (3), 
we in t roduce  the variable Y, which scales with the previously-defined 
dimensionless  variable y as follows: 

Y = y M  (M in seconds)  (10) 

Given the definition o f y  given by equat ion (1), the conjecture presented 
in equat ion  (3) could be confirmed if Y is shown to be linearly dependent  
on time. 

A simulat ion making  use o f  working equat ions (4) and (8) has been 
carried out  with the fol lowing choice o f  parameters:  v~ w = 103; ]]f2]] 1/2 = 
10-6s-1;  d i m ( Z ) = 3 •  N = 2  and OSAB/Ot=IO-6s -1 for all A and B 
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Fig. 1. Growth of ordered domains beyond a dynamical instability at the onset of a center 
manifold. The solid squares correspond to a hypothetical purely linear time dependence, 
whereas the plot with open squares represents the result of our simulation. Parameters are as 
indicated in the text. 
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in A. The free parameter has been fixed at M = 10 -3 s. The plot with open 
squares presented in Figure 1 was obtained by means of the simulation and 
the plot with solid squares reflects a hypothetical purely linear behavior. 
The simulation conclusively supports the power law conjectured in equation 
(3). Nevertheless, however suggestive or compelling that evidence might 
be, producing an analytical proof  remains a challenging open problem. 
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